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Abstract

The computation of exterior wave problems at low wave numbers can become prohibitively expensive
when higher circumferential modes are significant. An analysis of the effect of wave number on scattering
problems, with local absorbing boundary conditions spetifie simple shapes as on-surface radiation conditions,
provides guidelines for satisfactory performance. Excessive computational cost may be avoided for most practical
applications.
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1. Introduction

Artificial boundaries are introduced in exterior problems in order to form bounded computational
domains that are suitable for domain-based discretization. Correct far-field behavior is then enforced
either by specifying proper boundary conditions on this boundary, or by assuming interpolation with
suitable behavior in the complement of the computational domain [1]. The latter approach is associated
with ‘infinite elements’ [2—6]. On the other handrtificial boundary conditins (ABC)refer to a class
of methods that is based on specifying proper boundary conditions on the artificial boundary. The terms
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‘radiation’, ‘nonreflecting’, or ‘absorbing’ boundary conditions are used in the context of exterior wave
problems.

Absorbing boundary conditions can be either exact or approximate. The former representations (which
are usually global) are often termed exact even though they are typically expressed as infinite series,
e.g., [7-10], which in practice are truncated to a finite number of terms. Nonetheless, the order is
easily increased to almost any desirable level. On the other hand, straightforward implementation of
approximate boundary conditions in standagd)(finite element methods is typically restricted to lower-
order conditions, usually second order, due to continuity constraints. While there are advantages to the so-
called exact interface representations, approximate boundary conditions are more commonly employed in
practice due to a variety of reasons [11], primarily simplicity, locality, and applicability to general shapes
of artificial boundaries. This paper presents an analysis of the efféotvoflave number on scattering
problems, with local absorbing boundary conditions specified on simple shapes as on-surface radiation
conditions, providing guidelines for satisfactory performance on the simple cylindrical and spherical
geometries considered.

The development of approximate, local boundary conditions is ongoing, e.g., [12-17]. In the follow-
ing, we pay particular attention to the widely-used Bayliss—Gunzburger—Turkel (BGT) conditions [13],
and the local Dirichlet-to-Neumann (DtN) boundary conditions [15,18], reviewed in Section 3. When
employed on an artificial boundary in conjunction with finite elements, these boundary conditions are
known to perform well for high wave numbers. This conclusion has been demonstrated, for example, for
BGT, both analytically [13] and numerically [19-21].

In Section 4 we review analysis of absorbing boundary conditions, specified as on-surface radiation
conditions (OSRC) for single modadiation from simple shapes, showing that their performance indeed
deteriorates at lower wave numbers, particularly for higher modes. The OSRC-based methods were
originally developed for two-dimensional scattering problems [22]. The principle of these approaches
is to solve a system of two boundary equations where the unknowns are the traces of the scattered fielc
on the surface of the scatterer. The first equation characterizes the physical nature of the scatterer (the
boundary condition) and the second one is the didsgrboundary conditionABC) set onthe surface
of the scatterer. This approach leads to a sparse system of equations when both boundary equations at
discretized by the finite element method. However, OSRC-based methods are efficient only for convex
scatterers [23]. More analysis of OSRC implementations for scattering problems can be found in [24,
25]. Here, we adopt the OSRC approach to investigate analytically the performance of BGT and DtN
boundary conditions for low wave numbers. which are a concern for finite element implementations. It
is generally agreed (and confirmed by our results in Section 4) that for low wave numbers, accurate
computation of radiation problems with low-order approximate absorbing boundary conditions can
become prohibitively expensive when higher circumferential modes are significant. Extensive numerical
comparisons of both boundary conditions at low wave numbers are reported in [26].

A similar analysis forscatteringproblems is performed in Section 5. Analysis of OSRC implemen-
tations for scattering problems is presented in [24,25]. The concern for implementation on an artificial
boundary with finite elements is for low wave numbers. Here, the analysis shows that the range of sat-
isfactory performance extends to relatively low wave numbers in this case, as was shown in passing
in [27]. In qualitative terms this result, stating that for scattering high modes are less significant at low
wave numbers, is expected. The analysis herein shows that the reduced significance of high modes a
low wave numbers applies to problems with exact representations as well as with approximate boundary
conditions. Furthermore, we are able to quantify this effect, providing guidelines for practical computa-
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tion. The guidelines indicate that the range of low wave numbers at which satisfactory performance is
still retained is as low as would be required in most practical acoustic scattering applications.

2. Exterior problems of time-harmonic acoustics

Let R c R be ad-dimensional unbounded region. The boundarRetienoted by, isinternal and
assumed piecewise smooth (Fig. 1). The outward unit vector norniaisalenoted byz.

We consider a boundary-value problem related to acoustic radiation and scattering governed by the
Helmholtz equation: fina : R — C, the spatial component of the acoustic pressure or velocity potential,
such that

—Au—ku=f inR, (1)

u=0 onTl, 2)
. -1(9 _

lim rz (—u — Iku> =0. 3)

r—>00 or

Here, A is the Laplace operator arde C is the wave number, Ith> 0; i = /—1 is the imaginary unit;
r = |x| is the distance from the origin, anfl: R — C is prescribed. Homogeneous Dirichlet boundary
conditions on the internal boundarfy are considered for simplicity. The results presented herein apply
to all types of admissible internal boundary conditions.

Eqg. (3) is theSommerfeld radiation conditicend allows only outgoing waves proportional to éxp)
at infinity. The radiation condition requires that energy flux at infinity be positive, thereby guaranteeing
that the solution to the boundary-value problem (1)—(3) is unique. Appropriate representation of this
condition is crucial to the reliability of any numerical formulation of the problem (1)—(3).

In scattering problems the acoustic field is decomposed into a known incideni'fatd a scattered
field u, i.e.,u' +u. The scattered field satisfies the boundary-value problem (1)—(3). The homogeneous
Dirichlet problem is called acoustically soft, and the Neumann problem is called hard. For extensive
results on properties of solutions to the boundary-value problem (1)—(3) with particular reference to
scattering see, e.g., [28-32].

R

Fig. 1. An unbounded region with an internal boundary.
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3. Measures of performance of absorbing boundary conditions

The unbounded domaiR is truncated by an artificial boundary; (characterized by curvature R),
yielding a bounded domaif? that is suitable for direct discretization (Fig. 2). By analyzing the problem
in the unbounded complemeRt\ €2, boundary conditions involving a relation of the unknown solution
and its derivatives are specified dfx. This completes the definition of the boundary-value problem
in £2, which may now be solved by computation (e.g., with the finite element method). From this point
onwardk is taken to be a positive real number.

3.1. BGT boundary conditions

We consider BGT conditions [13], a sequence of boundary operators based dnkhaifymptotics
which provides increasingly accurate approximations to the problem in the unbounded domain. BGT
conditions are widely used [19,33-35,21], and have recently been generalized to convex surfaces of
arbitrary shapes [12].

Simply specifying the Sommerfeld condition on the artificial boundary

BGT-0: g—z =iku onTry, 4)
can be considered a zero-order BGT condition (in the framework of the original sequence of
operators [13]). This is known to be inaccurate for practical implementation.

BGT conditions of order higher than two are inappropriate for conventional finite element implemen-
tations since they require regularity higher th@h Consequently, we consider only the first (BGT-1)
and second order (BGT-2) conditions in the following.

Fig. 2. The bounded computational domain.
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3.1.1. Two dimensions

In polar coordinates, the two-dimensional BGT conditions [13] may be expressed as Robin boundary
conditions on a circle of radiuR (using the Helmholtz equation to eliminate the second radial derivative
from BGT-2). Hence, oz we have

ou 1

BGT-1: L —(ik—— 5
ar (I ZR)M’ ®)
ou 1 1 1 9%u

BGT-22 L —(ik—— _ 77 6
or < 2R T BRI |kR)>“ T ORA—ikR) 302 ©

3.1.2. Three dimensions

We consider the spherical coordinate system,(¢), wherer > 0 is the radial coordinate,Q 6 < 2r
is the longitude or azimuth, andQ¢ < 7 is the polar angle or co-latitude. The three-dimensional BGT
conditions [13] may be expressed as Robin boundary conditions on a sphere of Rafliség the
Helmholtz equation to eliminate the second radial derivative from BGT-2). HencE; ove have

9 1

BGT-1: X _ <ik - —>u, @)
or R
ou 1 1

BGT-22 L —(ik—=)ut—" A 8
or < R>”+2R(1—ikR) st ®

Here, Aq is the Laplace—Beltrami operator, defined by
1 9 du 1 9%
=———|sing— —_— . 9
4= Sing a¢>( ¢8¢)+sin2¢> 962 ©
3.2. Local DtN boundary conditions

The truncated global DtN boundary condition ([11] and references therein) is localized, leading to a
sequence of boundary conditions of increasing order that preserves exact representation of a finite numbe
of lower modes. This procedure was proposed first for two dimensions [18], and later extended to three
dimensions [36]. Details of derivation for different boundary-value problems, along with treatment of a
variety of pertinent issues, are presented in [15].

As in the case of BGT conditions, local DtN conditions with more than two terms are inappropriate for
conventional finite element implementations since they require regularity highe€tha@onsequently,
we consider only the one term (DtN-1) and two term (DtN-2) conditions in the following.

3.2.1. Two dimensions
In polar coordinates, the two-dimensional local DtN boundary conditionsgofa circle of radiusR)
are expressed as follows [18]

ou  HP'(kR)

DIN-1: ==k "y, (10)
ar  H{P(kR)
o HY'(kR) HY' kR)  HY (kR)\ 02u
DtN'Z E = Wu ) — ) W . (11)
DkR) HY®R)  HYkR)
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Here, HV are n-order Hankel functions of the first kind. (See [37] for definitions and properties of
special functions employed herein.) The prime on functions denotes differentiation with respect to the
argument.

3.2.2. Three dimensions
In spherical coordinates, the three-dimensional local DtN boundary conditiod%; da sphere of
radiusR) are expressed as follows [36]

9 Y (kR

DiN-1: L= k#m (12)
ar  h{P(kR)
du AY'&R) 1/hY &R R (kR)

DtN-2:  — =k(‘§l)—u —( S — 5 )Asu). (13)
or hg'(kR) 2\ hg'(kR)  hi’(kR)

Then-order spherical Hankel functions of the first kind satisfy
WOy = [ = HY, ) (14)
n - 2 n+1/2 .

The following result states the relation between B&dnd DtN#. (As noted above, the form of BGT-2
considered (8) is obtained by using the Helmholtz equation to eliminate the second radial derivative from
the original definition [13].)

Proposition 3.2.1. In three dimension8BGT-r and DtN-n are identical forn = 1, 2.

Proof. This result is a direct consequence of recursion properties of spherical Hankel functions [37,
(10.1.22)]

’ n
mY' () =~ hP ) =20, (15)

and the property
hY(r) = —iexplir)/r. O (16)

This connection was established in [38].
3.3. Measures of performance in OSRC context

The following analyses (Sections 4 and 5) evaluatektRedependence of the performance of local
absorbing boundary conditions specifieal simple shapes as on-surface radiation conditions (OSRC).
The OSRC implementation is employed primarily as a tool to analyze the performance of the boundary
conditions. In typical computation, the absorbing boundary conditions are specified on the artificial
boundaryly that bounds a computational domainh(Fig. 2) which is discretized by finite elements. In
such implementations absorbing boundary conditions are known to perform well atigpecifically
for BGT, see [13,19-21]). The failure of the lower-order absorbing boundary conditions to accurately
capture highly directional solutions at higlR in some of the following analyses (which seems to counter
intuition) has implications on the OSRC implementation only, as observed previously [23]. This difficulty
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may be alleviated by employing higher-order radiation conditions [39], which are implemented in the
OSRC context in straightforward manner.

When specified on an artificial boundary, increasing the size of the computational domain by
increasingR (and thereby increasingR), without modifying the physical boundary, will improve
the performance of the absorbing boundary condition, as expected [13,19-21]. The main interest in the
following analyses is to evaluate the performance of the absorbing boundary condilimns &, to see
if relatively small computational domains can be employed in order to avoid excessive computational
cost.

In this paper we employ specific acoustic impedance, resistance, and inertia to evaluate the
performance of BGT and local DtN conditions. The precision in which an absorbing boundary condition
represents the unbounded medium may be assessed by comparing its specific acoustic impedanc
(the ratio of acoustic pressure to velocity) for given problems to exact values at various frequency
regimes [40]. This approach is also used in the study of infinite elements [41-43].

Following [40], we introduce the ensuing non-dimensional quantities for the time-harmonic case
considered herein:

Definition 3.3.1. The specific impedance is
iku
Vu-n’

7(x) = 17)

Here,V is the gradient operator. The specific impedance is a pointwise measure of the inverse of the
normal derivative in the Dirichlet problems considered subsequently.

It is also convenient to consider separately:

Definition 3.3.2. The specific resistance
n =Rez, (18)

and the specific inertia

=1 Imz. (29)

As the names imply, these quantities measure the effect of the truncated medium in physical terms.
Specific inertia is a non-dimensional measure of the ‘added mass’ of the surrounding medium. Specific
resistance represents the radiative or damping effect. Use of these definitions is motivated in part by
the limit behavior, particularly for axisymmetric spherical modes, see Eqgs. (75)—(76). Inertial effects
dominate the behavior at low wave numbers, while at high wave numbers resistance dominates. Exact
values of these quantities are readily determined for simple configurations. Thus, these measures provide
convenient indicators of the low- and high-frequency performance of a given approximate representation.

Following [44], we also introduce a measure which is a property of exact representations, and
originates from electrical network synthesis:

Definition 3.3.3. A boundary condition is labeled passive when its specific resistance is positive, i.e.,
n > 0.
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4., Performance of ABC for single moderadiation

Most of the experience on employing specific impedance to evaluate absorbing boundary conditions is
based on problems of single mode radiation. The dependence of the specific impedance in such problem:
on the mode number is denoted

z=2z,(kR). (20)

Here, n is a nonnegative integer, unless specified otherwise. The aforementioned experience points
to the BGT-2 condition as being accurate faR > n + 1. Hence, we may conclude that on-surface
implementation of lower-order radiation conditions is inappropriate to problems withklBwand
significant high modes. In finite element implementatiahshas to be very large ik is low. This

greatly increases the computational cost. In this section we review analyses of single mode radiation
problems with BGT conditions and verify these conclusions. The analyses are then extended to local
DtN conditions with analogous conclusions.

4.1. Cylindrical harmonics

Thenth cylindrical mode is [45]
u=H®Y (kr)cosnb. (21)

We now derive specific impedances for cylindrical modes, analyze their asymptotic behavior, and present
illustrative examples.

4.1.1. Analysis
We first derive the exact specific impedance of #lie cylindrical mode and analyze its asymptotic
behavior.

Lemma 4.1.1. The exact specific impedance of #th cylindrical mode on the surface of a cylinder of
radius R is

_iHP(kR)
HY' (kR)

ex2 _

=1z, (22)

This expression is independent of the amgl@he symbolg®*? refer to (22) in subsequent usage.

n

Property 4.1.1. The asymptotic behavior of the exact specific resistance is

ﬂ%, n =0,

M ™\ ar (kR\20+1 askR — 0, (23)
(l’l!)z (7) 9 n_=zJ4,

m~1 n>0 askR— oo, (24)

which indicates passivity.
The asymptotic behavior of the exact specific inertia is
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—bM%%
Hn ™ 4

n

0,
L askR — 0O, (25)

\\/

9

1
My ™ W, n > 0 askR — oo. (26)

Proof. First, we use the recurrence formula of Hankel functions [37, (9.1.27)] to rewrite Eq. (22) as
follows
[
2= , n=0. (27)
n/kR — Hyy (kR)/ H" (kR)
Additionally, using the asymptotic forms for small arguments of Bessel functions [37, (9.1.7)—(9.1.9)]
and the asymptotic behavior B8 — oo [37, (9.2.7), (9.2.9), and (9.2.10)], we deduce that

(0}
1

1+iZlog(%f),

Sy -y,

[ 2 An?—1
H®Y(kR) ~ R <1+| ’;kR >exp< <kR—”7”—%>>, n>0 askR— oo. (29)
T

The asymptotic behavior of the exact specific impedance (22) for small arguments is thus

HP(kR) ~ { askR — 0, (28)

\\/

o {n% +ikR IOg(ﬂ), n=0,
Z, 0~ . ot askR — 0. (30)
(3!)2(%) ’ _'M’ nzl,
For large arguments
HP (kR 1/2
alkR) n+1/2 0 ockR s oo, (31)
HOKR) KR
so that
i i
P - — . askR — oo, (32)
n/(kR)— (n+1/2)/(kR)+i i—1/(2kR)
and finally
i
el Sp ASkR— 0. (33)

Therefore, Property 4.1.1 is an immediate consequence. (Note that the asymptotic behavior for large
arguments is independent of mode numbér O

We now derive specific impedances for cylindrical modes with the local absorbing boundary
conditions and analyze their asymptotic behavior.

Lemma4.1.2. TheBGT-1approximate specific impedance is
2kR

ZRIT (34)

I=2n=
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This result is a direct consequence of using (5) with (21). This expression depeh#sonty.

Property 4.1.2. The asymptotic behavior of tiBGT-1 specific resistance is

N~ (2kR)?> askR — 0, (35)
Ny ~1 askR — oo, (36)

which is passive, as for the exact representation.
The asymptotic behavior of tH&GT-1 specific inertia is

Uy ~ 2 askR — 0, (37)

U askR — oo. (38)

~ 2(R)?

Proof. These properties result from rewriting Eq. (34) as follows
A(kR)? . 2R

n— — 1 . 39
T ARRZ+ 1 AKRZ+1 (39)
It follows that the asymptotic behavior of the BGT-1 specific impedance (34) is
Zn ~ (2kR)?> — 2ikR askR — O, (40)
o1
Zp~1l—l— askR — oo. (41)

2kR
Therefore, Property 4.1.2 is an immediate consequence.

The asymptotic behavior of BGT-1 for cylindrical harmonics can be evaluated by comparing (35)—
(38) to (23)—(26). The performance at the high wave number liméxact However, there is loss of
accuracy at low wave numbers, particularly for the specific ineutiat higher modes (compare Eq. (37)
with (25)).

Lemma 4.1.3. TheBGT-2 approximate specific impedance is

B (kR)?> +ikR
"~ (kR)>—3/8—n2/2+3ikR/2

Zn (42)

This result is a direct consequence of using (6) with (21). This expression depengdamddition
to kR.

Property 4.1.3. The asymptotic behavior of tiBGT-2 specific resistance is

8(9 — 4n?)
(34 4n?2)2
o ~1 askR — oo. (44)

M (kR)?> askR — 0, (43)

Passivity is lost fon > 2.
The asymptotic behavior of ti&GT-2 specific inertia is
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8
1
U ~ 2R)? askR — <. (46)

Proof. From Eg. (42), we deduce that

kR)2((kR)2+2 -1
(kR)“((kR)“+§— 5 (7)

Rezn - 2 £
(kRY* + (3 = n®)(kR)? + (5 + 3)?

and
KR(ERE 1 84 22
ImZn:_ 3( 2 8 2)2 35" (48)
kR)*+ (5 = nD)(kR? + (% + )2
It follows that the asymptotic behavior of the BGT-2 specific impedance (42) is
8kR [9— 4n?
n ™~ kR —i askR — 0, 49
¢ 3+4n2<3+4n2 ) - (49)
1

Therefore, Property 4.1.3 is an immediate consequence.

The asymptotic behavior of BGT-2 for cylindrical harmonics can be evaluated by comparing (43)—(46)
to (23)—(26). The performance at the high wave number limit is exact, as expected. However, there is loss
of accuracy at low wave numbers, particularly for the specific inertjg,at higher modes (compare
Eqg. (45) with (25)). Indeed, from (22) and (42), we have

Proposition 4.1.1. The relative error in the specific impedanceBGT-2is

ex2 __

. Z 2
lim = “~1-= asn— oo. (51)
kR—0  78X2 n

Proof. From Egs. (22) and (42), we obtain that

Zn 8n
My 2% = 34 an2 (52)
Therefore,
. Zn 8n 2
kIR!TO(l — ngz) = 1 — w 1 — ; asn — oQ. O (53)

This result clearly indicates that BGT-2 underestimates the exact specific impedance of higher modes
at low wave numbers.

Lemma 4.1.4. TheDtN-1 approximate specific impedance is

=27, = ZSXZ- (54)
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This result is a direct consequence of using (10) with (21), and comparing to (22). This expression
depends ok R only.

Remark 4.1.1. This expression is exact far= 0, which follows from the design of the DtN boundary
condition. Therefore, the asymptotic behavior of this expression is identical to th§dkee (23)—

(26) for n = 0). Hence, the performance of DtN-1 at the high wave number limit is exact, as expected.
However, there is loss of accuracy at low wave numbers, particularly for the specific ipgrighigher
modes.

Lemma 4.1.5. TheDtN-2 approximate specific impedance is

1
.= _ 55
T 1 n2(1)292— 17299 59)

This result is a direct consequence of using (11) with (21). This expression depends @udition
tokR.

Remark 4.1.2. Thus, the specific impedance of DtN-2 is exact/ice 0 and 1, which follows from the
design of the DtN boundary condition.

Property 4.1.4. The asymptotic behavior of tligtN-2 specific resistance is

n%, n=0,

Ny ~ askR — 0O, (56)
2R, n>1,

n,~1 askR — oo, (57)

which is passive, as for the exact representation.
The asymptotic behavior of tli#tN-2 specific inertia is

—log(¥&), n=0,
[in ~ [ . 9(%) askR — 0, (58)
n_2’ n = 9
n~ —— kR . 59
n SKR)? askR — o (59)

Proof. First, we note (see Eq. (55)) that the limit behavior of the DtN-2 specific impedance is exact for
n=0and 1.
Forn > 2, we rewrite Eq. (55) as follows

ngzzixz

Ztlaxz_i_ I’lz(ZSXZ _ Z(lexz) .
Moreover, by the asymptotic behavior of the exact specific impedance for small arguments (30) (see
Property 4.1.1), we have

in = (60)

Z¢lax2+ HZ(ZSXZ— Z<19x2) N I’lZZSXZ askR — O. (61)
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Therefore,
ex2

Z~ L askR— 0. (62)
n

Hence, Property 4.1.4 is an immediate consequenceRoer 0.
Furthermore, from Eqg. (55) and the asymptotic behavior of the exact specific impedance for large
arguments (32) (see Property 4.1.1), we deduce that

20~ 7% askR — oco. (63)
Hence, we deduce that
i
Zn~1— R askR — oo. (64)

Property 4.1.4 is then an immediate consequencé Ror> co. O

The asymptotic behavior of DtN-2 for cylindrical harmonics can be evaluated by comparing (56)—(59)
to (23)—(26). As in the case of BGT-2, the performance of DtN-2 at the high wave number limit is exact,
as expected. However, there is loss of accuracy at low wave numbers, particularly for the specific inertia,
W, at higher modes (compare Eq. (58) with (25)). Indeed, we have

Proposition 4.1.2. The relative error in the specific impedance®iN-2 is

1
am, e ~1— - asn — oo. (65)

Proof. From Eq. (62) (see Property 4.1.4) we obtain

ex2

Zn Zl

) ~ e askR — 0. (66)
Moreover, using Eq. (30) (see Property 4.1.1), we deduce that

0 A (KR)3 —ikR

Zexz ~ ,ERZZ? — askR — 0. (67)

<y n [(,ﬂ)Z(T) L — IkR/n]
It follows that

1
My ze - asn — oo, (68)

which concludes the proof of Proposition 4.1.23

This result clearly indicates that DtN-2 underestimates the exact specific impedance of higher modes
at low wave numbers.

4.1.2. lllustrative examples

Figs. 3—6 show the dependence of specific impedandeRoiThe limit behavior, as specified above,
is easy to verify from the figures. The performance at high wave numbers is accurate, as expected.
There is an overall deterioration at low wave numbers. Perhaps surprisingly, BGT is more accurate than
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2.5

2.

1

10 10° 10 10 10

kR kR

Fig. 3. Specific resistance (left) and inertia (right): cylindrical mode-J 0; DtN-1 and DtN-2 are exact.

o 10° ! = 10° 10’
kR/(n+1) kR/(n+1)

Fig. 4. Specific resistance (left) and inertia (right): cylindrical mode-J 1; DtN-2 is exact.

0.9
0.8
0.7
0.6
W05
0.4[~
0.3
0.2
0.1

0
10’ 107" 10° 10’

—1 0

10
KR/(n+1) kR/(n+1)

Fig. 5. Specific resistance (left) and inertia (right): cylindrical mode-j 2.

DtN for low wave numbers in Figs. 4-6, while both approaches contain errors as a result of truncated
operators, BGT in two dimensions is based on Highasymptotics, introducing another source of error.

The numerical results in Figs. 4—-6 seem to indicate that these two sources of error offset each other to
a certain extent.
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0 10
kR/(n+1) kR/(n+1)

Fig. 6. Specific resistance (left) and inertia (right): cylindrical mode-j 4.

Both BGT-2 and DtN-2 underestimate exact values, particularly of specific inertia, at very low wave
numbers for modes higher thar= 1 (Figs. 5 and 6), as predicted. For lower modes-(0 and 1) BGT-1
is accurate atR > (n + 1). DiN-1 is exact fom = 0 and otherwise is similar in performance to BGT-1.
Both are accurate for higher modesx 1, not shown in figures) only &R > (n + 1). DIN-2 is exact for
the first two modes{= 0 and 1), and otherwise is similar in performance to BGT-2. Both retain accuracy
for all modes akR > (n 4+ 1). Thus, ifn is high andk is low, R must be large for good performance of
BGT-2 and DtN-2.

Figs. 5 and 6 reveal that BGT-2 and DtN-2 are not passive for higher cylindrical radiation modes
(n > 1) atkR < n + 1. We note that an investigation of the effect of lack of passivity on the performance
of artificial boundary conditions [44] indicates that it need not be deleterious.

4.2. Axisymmetric spherical harmonics

The axisymmetric spherical mode is [45]
u = hi (kr) P, (cosg). (69)
Here, P, (cose) is the Legendre polynomial, which satisfies the Legendre equation
d d
_(Sin p (P (cosg))
do do

We now derive specific impedances for axisymmetric spherical modes, analyze their asymptotic behavior,
and present illustrative examples.

) +n(n + 1) sing P, (cose) = 0. (70)

4.2.1. Analysis
We first derive theexactspecific impedance of theth axisymmetric spherical mode and analyze its
asymptotic behavior.

Lemma 4.2.1. The exact specific impedance of #tl axisymmetric spherical mode on the surface of a

sphere of radiusR is
_inP(kR)

CnY &Ry

ex3 _
n

(71)
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This expression is independent of the angl&he symbolg®3 refer to (71) in subsequent usage.

Remark 4.2.1. By applying recursion properties of spherical Hankel functions (15) in Eqg. (16), and
by [37, (10.1.2) and (10.1.3)], one can easily verify that

kR
ex3

-, 72
O TR (72)
os_ (KR)?+ikR

T kR)Z2— 2+ 2R’

(73)

Remark 4.2.2. Property 4.2.1 below makes use of the double factorial, defined by [46]
1.3-5---(n—2)n nodd
n!!:{2-4-6---(n—2)n n even (74)
1 n=-1,0.

Property 4.2.1. The asymptotic behavior of the exact specific resistance is

(kR)”+l 2
T ™~ { ((n+l)(2nfl)!!) askR — 0,

1 askR — oo,

(75)

which indicates passivity.
The asymptotic behavior of the exact specific inertia is
L askR—0,
My ™~

n+1
(76)
1
W askR — oo.
Proof. First, we use the recurrence formula of spherical Hankel functions (15) to rewrite Eq. (71) as
follows
[
8= n>0. (77)
n/kR —hY, (kR) /RS (kR)
From the limiting form of spherical Bessel functions for small arguments [37, (10.1.1)—(10.1.5)], we

deduce that

(kR)" i(2n - D

hD&R) ~ — kR — O. 78

kR o T T rryt BSRR (78)
Thus

WD (kR) 2n+1 kR \?

&R 2041 G0 KR askR — 0, (79)

hiP (kR) kR (2n — D!
so that

ex3 i

~ kR — 0 80

T R) — @i+ 1/ (kR) + 1((kR)" /(21 — D112 askR =5, (80)

and finally

2 .
eX3N (kR)n+l B |kR
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Therefore, the limits for small arguments in Property 4.2.1 are an immediate consequence.
From the limiting form of spherical Bessel functions for large arguments [37, (10.1.8)—(10.1.9)], we
deduce that

-D"(n(n+1) . . ni
hYkR) ~ ( —i)e kR +— askR . 82
2 (kR) TR KR i)expli + > SkR — oo (82)
Thus
RY kR . n+1
”Jlr— ~—i+ askR — oo, (83)
i (kR) kR
so that
3~ ! 1- 1 askR— 00, (84)

n/(kR)+i—(n+1/KkR) kR

which concludes the proof of Property 4.2.1 in the limit for large arguments. (Note that the asymptotic
behavior for large arguments is independent of mode numpero

We now derive specific impedances for axisymmetric spherical modes with the local absorbing
boundary conditions and analyze their asymptotic behavior. Recall that in three dimensions aBtN-
identical to BGTn for n =1, 2 (see Proposition 3.2.1).

Lemma4.2.2. TheBGT/DtN-1approximate specific impedance is

=27, = ZSX3- (85)

This result is a direct consequence of using (7) or (12) with (69) in (17), and comparing to (71). This
expression depends @R only.

Remark 4.2.3. This expression is exact far= 0, which follows from the design of the BGT and DtN
boundary conditions. Therefore, the limit behavior of this expression is identical to tHft ¢See (75)—

(76) for n = 0). Hence, the performance of BGT/DtN-1 at the high wave number limit is correct, as
expected. Still, there is loss of accuracy at low wave numbers, particularly for the specific inegta,
higher modes.

Lemma 4.2.3. TheBGT/DtN-2 approximate specific impedance is

1
128 n(n 4 1)(1/29° - 1/289 /2

Zn (86)

This result is a direct consequence of using (8) or (13), and (70), with (69). This expression depends
onn, in addition tokR.

Remark 4.2.4. Eq. (86) indicates that the specific impedance of BGT/DtN-2 is exact to10 and 1,
which follows from the design of the BGT and DtN boundary conditions.
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Property 4.2.2. The asymptotic behavior of tlBT/DtN-2 specific resistance is

” ~ { —2%(/@2 askR — 0,
1 askR — oo.
Passivity is lost fon > 2.

The asymptotic behavior of tHBGT/DtN-2 specific inertia is

(87)

1

2
Wy ™~ { "2 askR — oo (88)
(kR)?

Proof. First, we note that the limit behavior of the BGT/DtN-2 specific impedance (86) is exactfdr
and 1. Fom > 2, we write Eq. (86) as follows

ex3_ex3
225724

Zn = . 89
2223 4 n(n + 1) (z8° — 289) (89)
Then, using Eqg. (81) fat = 0 and 1 (see Property 4.2.1), one can verify that
kR)? 1)/2—1
Rez,,w—( ) (n(n+1)/ ) askR — 0, (90)
(1+n(n+1)/2)?
and
2kR
Imz,~———— kR — O. 91
Mo 2 o7 (1)
Therefore, the asymptotic behavior,ia® — 0, of the BGT/DtN-2 specific impedance (86) is
nn+1)—2 5 . 2kR
p~—2————(kR) -l —————, >2 askR — 0, 92
¢ P T A ey rori S - (92)
which concludes the proof of Property 4.2.2 k&t — 0.
Applying Eq. (84) forn =0 and 1 (see Property 4.2.1) to Eqg. (89), we deduce that
Zn ™ Z8X3 askR — oo. (93)
Therefore, the asymptotic behavior,ia® — oo, of the BGT/DtN-2 specific impedance (86) is
[
Z,~1—— n>2 askR— oo, (94)

kR
which concludes the proof of Property 4.2.2 k& — co. O

The asymptotic behavior of BGT/DtN-2 for spherical harmonics can be evaluated by comparing (87)—
(88) to (75)—(76). Again, the performance at the high wave number limit is correct, as expected. However,
there is loss of accuracy at low wave numbers, particularly for the specific inertiat higher modes.
Indeed, we have

Proposition 4.2.1. The relative error in the specific impedanceBGT/DtN-2forn > 2is

ex3 _

.z z 2
lim =2 ~1-= asn— oo. (95)
kR—0 ng3 n
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1 ~
0.9f — Exact
o8 | BGT/DtN-1
0 10’ 0
kR/(n+1) kR/(n+1)
Fig. 7. Specific resistance (left) and inertia (right): Axisymmetric spherical mode (; BGT/DtN-2 is exact.
0.9 Exact
0.8 * — [EXacC
o7t N | BGT/DtN-1
0.6 ---- BGT/DtN-2
u0.5
0.4
0.3
0.2
0.1
- 0 1 O -1 0 1
10 10 10 10 10 10
kR/(n+1) kR/(n+1)
Fig. 8. Specific resistance (left) and inertia (right): Axisymmetric spherical mods @.
0.8x
13 0.7h% — Exact
'1 LN e BGT/DtN-1
0.6 ---- BGT/DIN-2
0.8 0.5
n 0.6 Ho.4
0.4 03
0.2t" )
0 0.2
-0.2 0.1
-0.4 0
107" 10° 10' 107" 10° ' 10'
kR/(n+1) kR/(n+1)
Fig. 9. Specific resistance (left) and inertia (right): Axisymmetric spherical mods 4.
Proof. From Eg. (92) (see Property 4.2.2) and Eq. (81) (see Property 4.2.1), we deduce that
n 1
Z +n (96)

lim =
kR—0z®3 14+ n(n+1)/2
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Hence,

lim

kR—0 <y ) (97)

z8 24+n(n+1)
Therefore, Proposition 4.2.1 is proved

(1_ Zn )_2+(n—1)(n+l)

This result clearly indicates that BGT/DtN-2 underestimates the exact specific impedance of higher
modes at low wave numbers.

4.2.2. lllustrative examples

Figs. 7-9 show the dependence of specific impedandeRoiThe limit behavior, as specified above,
is easy to verify from the figures. The performance at high wave numbers is accurate, as expected. There
is an overall deterioration at low wave numbers. BGT/DtN-2 underestimates exact values, particularly
of specific inertia, at very low wave numbers for modes higher thanl (Figs. 8 and 9), as predicted.
BGT/DtN-1 is accurate only &R > (n + 1), except for the breathing mode £ 0), where BGT/DtN-1
(85) is exact and identical to BGT/DtN-2 (86). BGT/DtN-2 is exact for the first two modes{ and 1,
Fig. 7). BGT/DtN-2 retains accuracy for all modeskd& > (n + 1). As in two dimensions, if: is high
andk is low, R must be large for good performance of BGT/DtN-2.

Figs. 8 and 9 confirm that BGT/DtN-2 is not passive for higher axisymmetric spherical radiation modes
(n > 1) atkR <n+ 1, as in the cylindrical case.

5. Performance of ABC on round obstacles

In this section we derive the specific impedance of on-surface local absorbing conditions for scattering
problems, highlighting its behavior at lokR, and compare it to exact values. Specific impedance now
depends on the direction of the incident wave.

5.1. Scattering of a plane wave from a soft circular cylinder

Consider an incident plane wave along the positivexis
u' = exp(ikx), (98)

scattered by an infinite circular cylinder of radi&s The angle to the direction of the incident wave

is 6 = arctar(y/x), so that there is no restriction in this choice of direction. Due to the homogeneous
Dirichlet boundary condition on the obstacle=£ R), imposed on the total field, the scattered field in
polar coordinates satisfies

u = —exp(ikR cosd) (99)

(recall x = r cos9). We now derive specific impedances for this scattering problem, analyze their
asymptotic behavior, and present illustrative examples.

5.1.1. Analysis
Calculating the exact specific impedance requires the normal derivative on the surface, which is
obtained from the series representation of the scattered field [28]
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T (kRYHP (kr)
u(r,0)=-2 ———"% - cosnf. (100)
;) HY (kR)
The prime on the sum indicates that the first term is halved. The derivative on the surface is
du I (kRYHY (kR)
—(R,0) =—2k cosné. 101
o (R.0) = Z 1O R (101)

The exact specific |mpedance of the scattered field on the boundary is then obtained by using Egs. (99)
and (101) in Definition 3.3.1. One can observe that the result dependB and on the angle (from the
incident plane wavej. Therefore, we write

z=2¢9(kR), (202)
in contrast to single mode radiation (where it depends Rrandn).

Property 5.1.1. The asymptotic behavior of the exact specific resistance is

kR
N ~ 717 askR — 0O, (103)

which indicates passivity.
The asymptotic behavior of the exact specific inertia is

kR
o ~ —Iog<7> askR — 0. (104)

Proof. First, we rewrite the derivative on the surface (101) using the exact specific impedanceibf the
cylindrical mode (22) (see Lemma 4.1.1), as follows

1/n(kR)

—(R 9)_—2k2 it “er cosné. (105)
Moreover, from the asymptotlc form of Bessel functions for small arguments [37, (9.1.7)]
kR/2)"
Jn(kR)w( /‘ ) askR — 0O, (106)
n

and using the asymptotic behavior of the exact specific impedance aeffttoylindrical mode for small
arguments (30) (see Property 4.1.1), one can verify that

Jo(kR ik
(R o)~ —ik PR sk 0, (107)
25 25
Since,
u(R,0)~-1 askR — 0, (108)

it follows that the asymptotic behavior of the exact specific impedance of a circular cylinder scattering a
plane wave is

—ik
—ik/z§*
Therefore, Property 5.1.1 is a an immediate consequenoe.

29 ~ ~ ngz askR — 0. (109)
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Remark 5.1.1. One can easily verify that the BGT-1 approximate specific impedance for scattering of a
plane wave from a soft circular cylinder is equal to that of cylindrical harmonics, see Eq. (34). Thus, itis
problem independent, lacking the angular dependence of the analytical representation.

Lemma5.1.1. TheBGT-2 approximate specific impedance for this problem satisfies

B (kR)* +ikR
~ (kR)2(2—sirP6)/2—3/8+ikR(3—cos9)/2’

Zg (110)

This result is obtained directly from using Egs. (6) and (99) in (17). This expression depe@dmon
addition tokR. Compare to (42) for similarities to and differences from the radiation problem.

Property 5.1.2. The asymptotic behavior of tlRGT-2 specific resistance is
8(kR)?>(9—4co®) askR — 0,
g ~ 2 (111)
m askR — oo,

which indicates passivity.
The asymptotic behavior of tiGT-2 specific inertia is

8 askR — 0, ,
T —emesito 1 askr oo (112
Proof. From Eg. (110) (see Lemma 5.1.1), we deduce that
8 5 .8
Z0 ™~ §(kR) (9—4coy) — |§kR askR — 0, (113)
o~ ( = ;;23”26) askR — co. (114)

Property 5.1.2 is then an immediate consequence.

Remark 5.1.2. One can easily verify that the DtN-1 approximate specific impedance for scattering of a
plane wave from a soft circular cylinder is equal to that of cylindrical harmonics, see Eq. (34). Thus, itis
problem independent, lacking the angular dependence of the analytical representation.

Lemma 5.1.2. TheDtN-2 approximate specific impedance for this problem satisfies

1
1/z82 4+ kR(kRSir? 0 + icos0) (1/z82 — 1/78%?)

zo= (115)

This result is obtained directly from Egs. (11) and (99). Hef¥ are given by Eq. (22). As in the case
of BGT-2, the DtN-2 specific impedance depend® pim addition tok R. Compare to (55) for similarities
to and differences from the radiation problem.
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Property 5.1.3. The asymptotic behavior of tligtN-2 specific resistance is

8 askR -0, 116
o ﬁ askR — oo, ( )
which indicates passivity.

The asymptotic behavior of tli#tN-2 specific inertia is

—log(%) askR — 0,
Mo

_ 2(co—1-19sirf9/64) 1 (117)

S0 TR askR — oo.

Proof. First, we rewrite Eq. (115) (see Lemma 5.1.2) as follows

ngz
1+ kR(kRSIP6 +icost)(z8%/z9%— 1)

Moreover, from Eq. (30) (see Property 4.1.1), one can verify that

Zg (118)

Zex2
kR(O— 1) ~z2? askR — 0. (119)

ex2
1

Hence, it follows from Eq. (118) that the asymptotic behaviork&— 0, of the DIN-2 specific
impedance (115) is identical to that of the exact specific impedance (109), namely

70~ 7% askR — 0, (120)

and therefore, Property 5.1.3 is an immediate consequenéfes O.
We now prove Property 5.1.3 in the case whieRe— co. From Eq. (22) (See Lemma 4.1.1) and the
recurrence formula [37, (9.1.27)], we have

1 1 _<Hél)(kR) H{“(kR))
2 2 kR \HOP*&R) HPG*R))
Hence, based on the expansion formula of the Hankel functions for large argument [37, (9.2.7)], we have

HP(R) 1+ 3i/(8kR) + 15/(2(8kR)%)

(121)

i - askR . 122
HP&R)  1-i/(8kR) — 9/(2BkR)?) o (122)
Thus, one can verify that the asymptotic behaviok Rs—> oo, of the DtN-2 specific impedance (115) is
2 i cosd —1—19sirf6/64
~— — askR — oo. 123
“ 2—sin29< kR 2_sir6 ) (123)

which concludes the proof of Property 5.1.3 k@ — co. O

Remark 5.1.3. The behavior of the DtN-2 specific impedance at the low wave number limit is identical
to the exact cylindrical breathing mode (see Egs. (23), (25) and (30j, #00) and DtN-1. For high

wave numbers the asymptotic behavior of DtN-2 is similar to BGT-2, as expected, see Egs. (111), (112),
and (114).
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— Series
2.5(°° ---- BGT-2
------ DtN-2

0.5 3

o . —
0 10' 10°

10 10° 10’ 10° 107" 10

kR kR

Fig. 10. Specific resistance (left) and inertia (rightp at 0: Scattering of a plane wave from a soft circular cylinder.

o5+ — Series
: ---- BGT-2
20 X\ | DIN-2
ul.5 \‘
1
0.5
\.\
-1 0 1 2 0 -1 0 1 2
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kR kR

Fig. 11. Specific resistance (left) and inertia (rightp at 7 /4: Scattering of a plane wave from a soft circular cylinder.

5.1.2. lllustrative examples

Figs. 10-13 show the components of specific impedance at various angles. There is a large variation
in the accuracy at a givehR, but the limit behavior, as specified above, is easy to verify from the
figures. BGT-2 and DtN-2 are very similar at lafge. However, the superior performance of DtN-2 over
BGT-2 atkR < 0.5 is evident. In contrast to the performance for radiation problems, here the boundary
conditions exhibit passivity for all cases.

Figs. 14 and 15 show polar plots of the magnitude of the specific impedance. In the very low range
(kR =0.1), see Fig. 14, BGT-2 is not accurate, since it is based onhRyasymptotic representations
of HY(kR). On the other hand, DtN-2 is indistinguishable in this case from the series solution. The
situation for BGT-2 improves in the middle randeR(= 1 and 10). In the higher rangeR = 100) there
is a loss of accuracy for both BGT-2 and DtN-2. GSRplementation of th&BCs is ingpropriate for
scattering problems at higtR, as previously observed [23]. This is not a concern for implementation on
an artificial boundary. The important observation in this case is that BGT-2 is accurate for this scattering
problem at wave numbers as low/aR = 1 (and even somewhat lower), and DtN-2 exhibits very high
accuracy at wave numbers as lowkds= 0.1, in contrast to experience from radiation problems.
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kR kR

Fig. 12. Specific resistance (left) and inertia (rightp at 7 /2: Scattering of a plane wave from a soft circular cylinder.
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Fig. 13. Specific resistance (left) and inertia (rightp at 7: Scattering of a plane wave from a soft circular cylinder.

5.2. Scattering of a plane wave from a soft sphere

Consider an incident plane wave along the posihais (not to be confused with specific impedance)
u' = explikz), (124)

scattered by a sphere of radi®. The angle to the direction of the incident wave ds=
arctarn(v/x2 + y2/z), so that there is no restriction in this choice of direction. Due to the homogeneous
Dirichlet boundary condition on the obstacle=£ R), imposed on the total field, the scattered field in
spherical coordinates is

u = —exp(ik R cosp) (125)
(recall z = rcosp). We now derive specific impedances for this scattering problem, analyze their
asymptotic behavior, and present illustrative examples.

5.2.1. Analysis
Calculating the exact specific impedance requires the normal derivative on the surface, which is
obtained from the series representation of the scattered field [28]
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90 04

270 Lo DN-2 270

Fig. 14. Magnitude of specific impedande® = 0.1 (left) andkR = 1 (right): Scattering of a plane wave from a soft circular
cylinder.

270 e DtN-2 270

Fig. 15. Magnitude of specific impedandgy = 10 (left) andk R = 100 (right): Scattering of a plane wave from a soft circular
cylinder.

in(kRYhD (kr
u(r. 6, ¢) = Z' (2n + 28 ) (h<l>)( § P, (cosp). (126)

The derivative on the surface is

(v
2 o, = —k Y i+ p P R

n=0 n

The exact specific impedance of the scattered field on the boundary is obtained by using Egs. (125)
and (127) in Definition 3.3.1. One can observe that the result depend® and on the angle (from the
incident plane wavep. Therefore, we write

z=24(kR), (128)

in contrast to single mode radiation (where it dependg Brandn).
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Property 5.2.1. The asymptotic behavior of the exact specific resistance is
ng ~ (kR)> askR — 0, (129)

which indicates passivity.
The asymptotic behavior of the exact specific inertia is

ng~1 askR— 0. (130)

Proof. First, we rewrite the derivative on the surface (127) using the exact specific impedancetf the
axisymmetric spherical mode (71) (see Lemma 4.2.1), as follows

Jn(kR)
ng3

3 .

(R0, 0) = —k 1"+ DI Py (cosp). (131)

or prd

Moreover, from the limiting form of spherical Bessel functions for small arguments [37, (10.1.2)]

(kR)"

(2n+ D!

and using the asymptotic behavior of the exact specific impedance athhaxisymmetric spherical

mode for small arguments (81) (see Property 4.2.1), one can verify that

ju(kR) askR — 0, (132)

du . Jo(kR) ik
Since,
u(R,0,¢)~—-1 askR — 0, (134)

it follows that the asymptotic behavior of the exact specific impedance of a sphere scattering a plane
wave is

—ik
—ik/z&3

Therefore, Property 5.2.1 is a an immediate consequenoe.

2™ ~ z8X3 askR — 0. (135)

Remark 5.2.1. The BGT/DtN-1 approximate specific impedance is problem independent, see Eq. (85),
lacking the angular dependence of the analytical representation.

Lemma 5.2.1. TheBGT/DtN-2 approximate specific impedance for this problem satisfies
— 1
 1/z8% 4+ kR(kRsir? ¢ 4 2icosp) (1/z8° — 1/289) /2’

2 (136)

This result is obtained directly from Eqgs. (8) and (13), and (125) (assuming no longitudinal
dependence). Here®3 are given by Eq. (71). The approximate BGT/DtN-2 specific impedance for
this case depends a@h in addition tokR. Compare to (86) for similarities to and differences from the
radiation problem.
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Property 5.2.2. The asymptotic behavior of tlBT/DtN-2 specific resistance is

(1—cosp)(kR)> askR— 0, 137
g ™~ m askR — o0, ( )
which indicates passivity.
The asymptotic behavior of tHBGT/DtN-2 specific inertia is
1 askR — 0,
Mo ™~ 2(2cosp—2—sirt¢) 1 (138)
— T siZe? GRZ askR — oo.

Proof. Substituting the explicit expressions for the exact specific impedance of the first two axisymmet-
ric spherical modes (72) and (73) into the BGT/DtN-2 approximate specific impedance for the scattering
of a plane wave from a soft sphere (136), we obtain

_ (kR)* +ikR
"~ (kR)2(2—sirf¢)/2— 1+ ikR(2— cosp)
The asymptotic behavior is thus

26 ~ (1 —cosg)(kR)? — ikR askR — 0, (140)

2 < i 2cosp —2—sir¢
~———(1+— :
2—sif¢ kR 2—sirt¢

Property 5.2.2 is then an immediate consequence.

24 (139)

24 ) askR — . (141)

Remark 5.2.2. The behavior of the BGT/DtN-2 approximate specific impedance for the scattering
of a plane wave from a soft sphere at the low wave number limit is similar to the exact spherical
breathing mode (see (81) far= 0) and BGT/DtN-1. For high wave numbers the asymptotic behavior of
BGT/DtN-2 specific resistance is identical to the two-dimensional case.

5.2.2. lllustrative examples
Figs. 16—19 show the components of specific impedance at various angles. There is a large variation
in the accuracy at a giverR, but the limit behavior, as specified above, is easy to verify from the figures.

1.6 ,
2 1.4 — Series
Pol AN BGT/DtN-1
15 e ---- BGT/DtN-2
n 1038
1 0.6
0.4
0.5 0.2 ]
5 )
(0 -0.2
107" 107" 10° " 10 10°

Fig. 16. Specific resistance (left) and inertia (rightpat 0: Scattering of a plane wave from a soft sphere.
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Fig. 17. Specific resistance (left) and inertia (rightpat 7 /4: Scattering of a plane wave from a soft sphere.
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Fig. 18. Specific resistance (left) and inertia (rightpat 7 /2: Scattering of a plane wave from a soft sphere.
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Fig. 19. Specific resistance (left) and inertia (rightpat : Scattering of a plane wave from a soft sphere.

As in the case of scattering from a cylinder, and in contrast to the performance for radiation problems,
here the boundary conditions exhibit passivity for all cases.

Figs. 20 and 21 show polar plots of the magnitude of the specific impedance. The false isotropy
of BGT/DtN-1 is evident. BGT/DtN-2 is accurate in the lower to middle rang& €©kR < 10). The
accuracy in the low rangef < 0.1) is better than BGT2 in two dimensions. As in two dimensions,
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Fig. 20. Magnitude of specific impedanés® = 0.1 (left) andk R = 1 (right): Scattering of a plane wave from a soft sphere.
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Fig. 21. Magnitude of specific impedandéa® = 10 (left) andk R = 100 (right): Scattering of a plane wave from a soft sphere.

there is deterioration in the higher rangeR(= 100). Again, we see that OSRC implementation of the
BGT/DtN condition is inappropriate for scattering problems at ti@h as also observed in [23]. This is

not a concern for implementation on an artificial boundary. As before, the important observation in this
case is that BGT/DtN-2 is accurate for this scattering problem at wave numbers lowérRhan, in
contrast to experience from radiation problems.

6. Summary and conclusions

In this paper, we analyze the effect of wave number, specifiéallyon the performance of BGT
and local DtN absorbing boundary conditions. The boundary conditions in the analyses are specified on
simple shapes as on-surface radiation conditions. Performance is measured by comparing approximate
and exact specific acoustic impedances.

A review of single mode cylindrical and sphericaldiation confirms the conclusion that the BGT-2
and DtN-2 conditions are accurate foR > n + 1, wheren is the mode number, potentially rendering
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OSRC implementation inappropriate in the presence of significant high modes, and increasing the
computational cost of finite element implementation.

A similar analysis of plane wavecatteringby a cylinder and a sphere indicates that the range
of satisfactory performance on scattering problems extends to relatively fown two dimensions
BGT-2 deteriorates at very lowR (since it is based on highR-asymptotic representations of Hankel
functions), but DtN-2 retains its excellent performance. Superior performance at veryRovs
exhibited by BGT/DtN-2 in three dimensions. This result is expected, since it merely states that high
modes are less significant at low wave numbers. The analysis shows that it applies to problems with
approximate boundary conditions as well exact representations. Furthermore, we are able to quantify
this effect, providing guidelines for practical computation. The guidelines indicate that relatively small
computational domains can be employed in most practical applications for the simple cylindrical and
spherical geometries considered, in order to avoid excessive computational cost.

We plan to address other measures of performance, as well as radiation and scattering from elongatec
geometries in future research.
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